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Taxonomy of Generative Models

What we’ve learned:
 Markov Models, HMMs, LDSs,

Deep Generative Models
RNNs

What we’ve learned:
e PPCA

/- VAE

Flow-based

models
(e.g., RealNVP)

Autoregressive
models
(e.g., PixelCNN)

Latent variable
models

Energy-based
models

Implicit models
(e.g., GANSs)

What we study now:
e Variants of RNN architectures
* Applications

Prescribed models
(e.g., VAES)



Autoregressive Models

* Many kinds of models

* Markov Chains
Hidden Markov Models
 Markov Random Fields
* Linear Dynamical Systems
* Recurrent Neural Networks
* Transformers

* Last lecture
* Model: Introduced the vanilla RNN architecture
* Inference: Unfolding
* Training: Backpropagation Through Time, Vanishing and Exploding Gradients
e Variants of RNNs: LSTMs, GRUs
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Timeline in

* In today’s and following lectures, we will see how the attention mechanism
emerges into the well-know Transformer architecture today.

Sequence to Sequence Learning with Neural

Networks [Sutskever et al. (2014)] Show, Attend and Tell: Neural Image Caption

* First application of RNNs to Machine Translation || Generation with Visual Attention [Xu et al. (2016)]
Tasks e First application of attention for image captioning

* Introducing so-called “encoder-decoder” e Qur first multi-modal application in this class!

architectures

2017
2014
Neural Machine Translation by Jointly Learning Attention Is All You Need [Vaswani et al. (2017)]
to Align and Translate [Bahdanau et al. (2015)] * Introduced the popular architecture known as
* Using attention mechanism during the Transformer
decoding process » Stacking attention layers together




Consider the task of Machine Translation

e Say we are given pairs of sentences, one with English and the other with Spanish

* Original sentence: “l have a big cat but a small house.”
* Translated sentence: “Tengo un gato grande pero una casa pequena.”

* In Conditional Language Modeling (CLM), we want to compute

Y1:Ty — drgmadx P@ (yl:Ty | xl:Tx)
yl:Ty

* Here:
. )71:Ty is the target sentence
* X1.1, is our original sentence

* O is the parameters of our language model

* So, what is our model? And how do we learn 67?



Overview

* The high-level idea is as follows:

* ARNN allows us to encode our source sentence (English) x{.7 to some latent (hidden) space
z1.7. This latent space encodes then semantics of the source sentence.

* Once the semantics are captured, we want to decode it into the language we desire, i.e.
target sentence (Spanish) y;.r.

e A similar structure can be found in VAEs, where we also have an encoder-
decoder structure

Context

Target Sentence p(c | ZO:Tx)

(Spanish)




Structure of the Encoder

* Recall RNN Encoder for next word prediction, and modify it to produce a context

C Context
1
So — Z1 T Zy; — Zz3 T Zyp — Zg Hidden states
t t t t t
€1 €y €3 €4 €t Word embeddings
t t 1 t 1
X1 X2 X3 X4 Xt Input text
I have” “a” big cat

 We do not need a decoder: just summarize input sequence into a context vector

Context

p(c | ZO:Tx)




Structure of the Decoder

e Recall RNN Encoder for next word prediction

“Tengo” “un” “gato” “grande” “week”
)71 572 573 }74 575 Predicted next word
1 1 1 1 1
So - S — S, — S3 — S4 — Sg Hidden states
t t t t t
€p €1 €- €3 €4 Word embeddings
t t t t t
Yo V1 V2 V3 Vs  Inputtext
<BOS> “Tengo” “un” “gato” “grande”

* We now augment it with context

Target Sentence
(Spanish)

Context

p(c | ZO:Tx)




RNN Encoder-Decoder Architecture

RNN Block RNN Block RNN Block RNN Block

Fixed-length
Context

Vector
Frase en Espafiol RNN Block RNN Block RNN Block RNN Block C=Zr,

Yy =1 Yr,)

 Remarks on Architecture from Sutskever et al. (2014):

* fencoder: fdecoder» 9decoder are parameterized by LSTM layers.

* In theory, the context vector can be the output of a more complex function h that takes in
the entire sequence of hidden states, i.e., ¢ = h(zy.7). But they found virtually no
difference in performance when compared to only using the very last state.

* Jencoder 1S NOt needed since we are not “decoding” from the ENCODER block.



Learning and Inference

N

* Learning: Suppose we have the N samples {(xi"T)x, 3’1(7%)} of source-target
' ' n=1

sentence pairs. Similar to sentence classification, we can train the entire model

end-to-end using cross entropy Icl)vss
1
(n) (n)
mHaXN z lOg P9 (yl:Ty | xl:Tx)
n=1
* Inference: To decode, we simply select the target sentence with the highest
probability. For a given xy.r,
)71:Ty = argmaxyl:TyPQ (Y1:Ty ‘ xl:Tx)

— argmaxyl:TyPH (yl:Ty C)PQ(C | xl:Tx)

Decoder « Context Context « Encoder




Major Flaw in Fixed-context seq2seq Models

Context

Target Sentence p(c | zo.r)

(Spanish)

* However, there are obvious flaws to this design:
* Encoding: the context ¢ may not be able to capture earlier parts of the source sentence

* Fixed-length Context: All the information from the source sentence is “jammed” into the
single context vector c.

* As a result, this design often fails to capture long range dependences.



Improving seq2seq Models

* Q: How can we improve fixed-context seq2seq models?
* A: one possibility is to make the context time-dependent!

* If our new context can better capture the information from each word, then it should prove
long-range dependencies.

Time-dependent Context:

P(Co:Tx | ZO:Tx)

v

Target Sentence
(Spanish)

* How should we model the probabilities P(Co:Tx | Zo.1,,) and p(Ve| Yo:e—1,Se, €e)?




Align and Translate [Bahdanau et al. (2015)]

* Intuition: Translation of the word x; to y, depends on the contexts of both the
source sentence x;.;r and target sentence y;.7.

* The latent space should be able to capture what is important

* Take our Spanish example:
* Original sentence: “I have a big cat but a small house.”
* Translated sentence: “Tengo un gato grande pero una casa pequena.”
* Notice that the translation doesn’t exactly align
* Hence we need a way to tell the model what part of the sentence to focus on

* High-Level Idea: During decoding, each context ¢; to be a summary of the
sources’ hidden states z,.r, and the target’s current hidden states s;



Align and Translate [Bahdanau et al. (2015)]

Time-dependent Context: p(co:Tx | Zo.r,) = Attention

Target Sentence v

* Define the probability of the target word y; at time t as
p(:Vt ‘YO:t—l» St xl:Tx) = Ydecoder (Yt—l: St Ct)

* Here Sy = fiecoder (St—1, Ve—1, C¢) is hidden state of the RNN decoder that takes
in the previous word y;, the previous hidden state s;, and a context vector ¢; as
input.

* Similar to before, fiecoder aNd Gdecoder are functions parameterized by neural networks.



Align and Translate

* Decoder: context vector c¢; is computed as a weighted sum
of the hidden states z;:

T Ye-1 | Yt
zx: _exp(ey) ( )

Ce = Zi - T €ri = A\ St—-1,Zj
= g kazl exp(etk) ! !

Context vector Weights of hidden states Alignment model

* Here:

* ¢, is the expected hidden state over all the hidden states with
probability ;.

* V¢j is the probability that the target word y; is aligned to, or o
translated from, a source word x;. 1. H-. H - 2
* a is called the Alignment model ' ' | |

* Computes how well the inputs around position j and the output at , ' X !
position t match R S R I
* Typically chosen to be a feedforward neural network

_______



Align and Translate

* In Bahdanau et al. (2015), they made the following design

choices:

* Encoder: Using a Bi-directional RNN, compute the forward and
backward hidden states h; and h; using input x = (xg, ..., X1).
Concatenate them as one encoder hidden state z; = [ht | hl

(assume they are row vectors). Hidden states are also called
annotations.

* Decoder: Using a single direction RNN with Attention
mechanism and alignment model

a(si_l,zj) = v, tanh(W,s;_; + Uazj)

* Ultimately, these design choices are flexible and
application-dependent.

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the ¢-th tar-
get word y; given a source

sentence (1, X, . .

.,iL‘T).



Visualization of Annotations and Alignments

* Correlation between the source
sentence (English) and target
sentence (French)

* Able to show that some target words
“attend” to multiple target words

* Diagonal: x; matches with vy,
* Cross-Diagonal: context dependent

reement
pean
omic
d

<end>

économique

européenne

<end>

nouvelles
armes
chimiques

<end>

(@

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight «;; of the annotation of the j-th source word for the i-th
target word (see Eq. @), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b—d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.



Recap

* Today we covered two seq2seq models:
* Encoder-Decoder with fixed context [Sutskever et al. (2014)]
* Time-dependent context with Attention Mechanism [Bahdanau et al. (2015)]

 Comparing seq2seq models
* Bi-directional RNNs instead of LSTMs
* Alignment model instead of single fixed-vector hidden states
* Have context vector ¢; that depends on the timestep

* Next lecture:
* Using attention mechanism for image captioning
* |s attention all your need?
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Encoder-Decoder Architectures

* Encoder-Decoder Architectures allow us to
* Learn a meaningful hidden representation for our input
* Via a Decoder, make use of our hidden representation for downstream tasks

 So far, our main motivation has been driven by Language
 Machine Translation, Text Summarization, etc

* What about Cross Modalities? Language-to-Vision?



Up Next

* Today we will talk about Image Caption Generation using a combination of
Variational Auto Encoders (VAEs) and Recurrent Neural Networks (RNNs)

* Introduced in Xu et al (2016) “Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention”

* Task: Given an image, generate a sentence that describes the image
* Can be seen as a combination of Object Detection and Machine Translation

"

A bird flying over a body of water.



Task

* Today we will talk about Image Caption Generation using a combination of
Variational Auto Encoders (VAEs) and Recurrent Neural Networks (RNNs)

* Our overall pipeline:

A
bird
flying
over
>la
body
of
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word
generation)

14x14 Feature Map

\.

 Similar to any language task, suppose we are given a vocabulary of size K, a
sentence of length T can be presented by each word being a one-hot embedding

vy ={yo, -, Y1} y: € R®



Image Encoder

* An image can have many sources of information

Frisbee Trees

Adult

— Child

* |deally our hidden representation should be meaningful, in the sense that it
should capture all the semantic parts of the image



Image Encoder: Convolutional Neural Networks

* To capture these meaningful
features, we will feed the image
through a (pre-trained)

Convolutional Neural Network
Frisbee x4

* Then use the feature vectors x; of
earlier convolutional layers to Adult x.,
represent low-level features

* Denote each part by

Figure above: In an ideal situation, each semantic part is
presented by a low-level feature vector x;.

X = [x1| | xL] € RTxXD

where T, is the number of low-level features of dimension D



Decoder: LSTM with Context

Time-dependent Context: p(co:Tx | Zo.r,) = Attention

Target Sentence
(Image,Caption)

 Similar to Align and Translate, now we have to design the context vectors

* For image captioning, we will use attention mechanisms to attend to different locations of
the image

* So, how is the context vector ¢; computed using our image features x; ... xr, ?



Decoder: Context Vector and Attention

* ¢; is a context vector that presents the relevant part of the image input at time ¢t

* There are two ways to compute c¢; :
* Option 1: ¢ = Hard Attention: only one of the T,, image locations is chosen
* Option 2: ¢ = Soft Attention: all of them is weighted in some way

 Similar to Align and Translate model, we can define:

with a surfboard.

_ exp(et;)
€t = QX1 s X1, Vet 0 Vi L) Yt = oy eri = a(xj, S¢—1)
Some function ¢ of usin 2ie=1 ¥P(ei) “ : ”
) . o i Weights, for which of the L Att.entlon Model
the attention weights an positions to attend to a multi-layer perceptron

features to combine a
context vector.

Image Features x4, ..., X,
Decoder’s Hidden Features s4, ..., St




First option for ¢: Stochastic Hard Attention

* Stochastic Hard Attention implies we use a “on-off” way to choose which location
of the image to focus

* Meaning we can only choose one location each time

* Let 7, € {0, 1}* be a one-hot location variable that represents where the model
decides to focus attention when generating the tth word.

e We can treat the attention locations as intermediate latent random variables
TX
p(?t,i =1 |?1:t—1Jx1' ""xL) — — 2 ?t,kxk
k=1

* This means we can treat y; as a categorical distribution:

¥t ~ Categorical(y¢ 1, -, VeT,)
* And we can just sample this distribution during inference to obtain samples for
the context ¢;.



Stochastic Hard Attention (Learning)

* While it is intuitive to parameterize y; ~ Categorical(y;,1, ..., Vt,r,), it raises the
qguestion of how to train the entire model end-to-end?
* This is the same issue we face in VAEs!
* Hence we can use the Variational Lower Bound approach

* To backpropagate through the entire model, we need to define a variational
lower bound on the marginal log-likelihood log p(yo.r | x1.1,) of observing the
sequence of words y,.r given image features x

* Quick Recall: Let X and Z be a random variable, jointly distributed with
distribution pg. If pg (X) is the marginal distribution of X and py (Z|X) is the
conditional distribution of Z given X. Then for any sample x ~ pg and any
distribution q,,, we have

‘ po(x,2)
10gp9 (X) = [EZ'qu [lOg Q¢(Z)

]



Stochastic Hard Attention (Learning)

* Just like our VAE model, we may now consider our context p(c) as our latent
variable. Then we can derive the ELBO.

* Define
* 1) as the parameters of the encoder q(c | x), the distribution of context vectors from CNNs.
* 0 as the parameters of the decoder p(y | ¢, x), the image captioner.

* The Evidence Lower Bound L:
Lo(c, %) = ) ay(c | ) logpe(y | ¢,x)

C
< 10g2 CIz/)(C | x)pg (v | ¢, %) (Jensen’s Inequality)
Cc

= logpg (v | x) (Marginal Log-Likelihood)



Stochastic Hard Attention (Learning)

* Our Lower Bound: Lg (¢, x,y) = X.c qy(c | x)logpe(y | ¢, x)

* To learn we will need the gradient. For both parameter W = {0, Y} in our RNN,
we can estimate the gradient using Monte Carlo sampling approximation.

. The exact derivative for the ELBO objective (derivation next slide):

6logp9(y|cx) dlog g, (c | x)
ZQ¢(C x) [ +1logpe (¥ | ¢, x) (;/’W ]

* The estimated derivative using Monte Carlo sampling approximation, with
Ve ~ Categorlcal(yt 1) ,ytL) and ¢; = Z?ﬂ VerXk:
oL 1 dlogpg(y | (™), x)
ow M oW

m=1

d log qy, (6(’") ‘ x)
ow

+ logpe(y | ™, x) ]



Derivation of the Gradient for Exact ELBO
* Loy (c,x,y) = 2cqy(c| x)logpe(y | ¢, x)

0Lg 4 (C, %, Y)

ow
01 lc, dqy(c|x) :
=Dcqy(clx) 28 Z;ﬁy oX) 4 waw logpg(y | ¢, %) (chain rule)

9 log pg(vic,x) dlog qy(c | x)
= Y qy(c 1 x) =222+ qy(c | x) ——-—1logps (¥ | ¢, x)

01 IC, X dlog qy (c | x)
= S qy(c | x) [EReIEX) | TORIWELD 150, (y | ¢, )]

dqy(clx) dlog qy(c | x)
oW qy (c | x) Py

* The third line uses the identity



Second option for ¢: Deterministic “Soft” Attention

* Recall our three equations:

_ exp(e¢;)
— ¢(X1, ey XL YVt 1 '")yt,L) yt] T o Ty Cti = a(xi'St—l)
Zk:l exp(etk)

* Hard Attention method requires us to ample the attention location ¢; each time
* Instead, we can take the expectation of the context vector c¢; directly

T
— ¢(X1, vy Xy yt,ll J)/t,L) — Ziil yt,ixi

* Then this would no longer be a “on-off” mechanism, but a weighted sum of low-
level features instead.

* Lucky for us, this is differentiable end-to-end using cross entropy



Soft Attention vs Hard Attention

Soft attention

o Tolvlull BT
PEFRECERR

bird flying over body water

Hard attention



Examples of Image Caption Generation

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

e W
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R
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A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
B mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.



Examples of Image Caption Generation

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.




Wrap-up

* We introduced a Multi-modal Encoder-Decoder architecture method to do image
caption
* Generative: parameterize location variable with categorial variable (Hard Attention), use
MCMC to sample and learn the RNN decoder.

e Discriminative: use weighted sum (Soft Attention) and train everything end-to-end.

* We have shown the brief history of Attention mechanism

* Sequence to Sequence with Neural Networks for Machine Translation
* The use of fixed-length single context vector to decode ¢

* Align and Translate for Machine Translation
* The use of multiple time-dependent context vectors c¢;

* Image Captioning
e Soft and Hard Attention



Why do RNNs fall short? And what can we do?

* Hard to capture long-term dependencies
* Require modification to architectures

* Training Issues: Vanishing/Exploding Gradients
* Hard to handle varying length sequences
* Sequential nature make them hard to process in parallel

e Solution to all of this:
* Let’s not depend on recurrence anymore

* Let’s just rely “Attention” completely to capture global dependencies



