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Taxonomy of Generative Models

What we’ve learned:
• PPCA
• VAE

What we’ve learned:
• Markov Models, HMMs, LDSs, 

RNNs

What we study now:
• Variants of RNN architectures
• Applications



• Many kinds of models
• Markov Chains
• Hidden Markov Models
• Markov Random Fields
• Linear Dynamical Systems
• Recurrent Neural Networks
• Transformers

• Last lecture
• Model: Introduced the vanilla RNN architecture
• Inference: Unfolding
• Training: Backpropagation Through Time, Vanishing and Exploding Gradients
• Variants of RNNs: LSTMs, GRUs

Autoregressive Models



• We will continue with Recurrent Neural Networks
• Sequence to Sequence Models
• Align and Translate Model
• Image Captioning

• Generalizations of Vanilla 
Neural Networks: RNNs 
can be very flexible, 
depending on the task!

This Lecture

Image 
Captioning

Action 
Prediction

Text Translation
Video Captioning

Video 
Segmentation

Image 
Classification

𝑧!

𝑦!

𝑥!

𝑔, 𝐴

𝑊

𝑓, 𝐶



• In today’s and following lectures, we will see how the attention mechanism 
emerges into the well-know Transformer architecture today. 

Timeline in 

Sequence to Sequence Learning with Neural 
Networks [Sutskever et al. (2014)]
• First applicaFon of RNNs to Machine TranslaFon 

Tasks
• Introducing so-called “encoder-decoder” 

architectures

2014

2015

2016

Neural Machine Translation by Jointly Learning 
to Align and Translate [Bahdanau et al. (2015)]
• Using attention mechanism during the 

decoding process

2017

Show, Attend and Tell: Neural Image Caption 
Generation with Visual Attention [Xu et al. (2016)]
• First application of attention for image captioning 
• Our first multi-modal application in this class!

Attention Is All You Need [Vaswani et al. (2017)]
• Introduced the popular architecture known as 

Transformer
• Stacking attention layers together



• Say we are given pairs of sentences, one with English and the other with Spanish
• Original sentence: “I have a big cat but a small house.” 
• Translated sentence: “Tengo un gato grande pero una casa pequeña.”

• In Condi&onal Language Modeling (CLM), we want to compute

!𝑦!:#! = argmax
$":$!

𝑃%(𝑦!:#! ∣ 𝑥!:#%)	

• Here:
• *𝑦":$!  is the target sentence
• 𝑥":$"  is our original sentence
• 𝜃 is the parameters of our language model

• So, what is our model? And how do we learn 𝜃?

Consider the task of Machine Translation



• The high-level idea is as follows:
• A RNN allows us to encode our source sentence (English) 𝑥":$ to some latent (hidden) space 
𝑧":$. This latent space encodes then semantics of the source sentence. 
• Once the semantics are captured, we want to decode it into the language we desire, i.e. 

target sentence (Spanish) 𝑦":$.

•  A similar structure can be found in VAEs, where we also have an encoder-
decoder structure

Overview

ENCODER: Each layer outputs 𝑝(𝑥!|𝑥":!$"),
with some hidden  𝑝 𝑧!	 𝑧!$", 𝑥!)

Source Sentence
(English)

𝑥 = (𝑥", … , 𝑥%!)

Target Sentence
(Spanish)

𝑦 = (𝑦", … , 𝑦%")

DECODER: Each layer outputs 𝑝 𝑦! 	𝑦&:!$", 𝑠! , 𝑐 ,
with some hidden state 𝑝 𝑠!	 𝑠!$", 𝑦!$", 𝑐)

Context
𝑝 𝑐	 𝑧&:%!)



• Recall RNN Encoder for next word prediction, and modify it to produce a context

• We do not need a decoder: just summarize input sequence into a context vector

Structure of the Encoder

𝑠2 𝑧"

𝑒"

𝑥"

𝑧3

𝑒3

𝑥3
“I” “have”

𝑧4

𝑒4

𝑥4
“a”

𝑧5

𝑒5

𝑥5

𝑐

𝑧6

𝑒6

𝑥6
“cat”“big”

Word embeddings

Input text

Hidden states

Context

ENCODER: Each layer outputs 𝑝(𝑥!|𝑥":!$"),
with some hidden  𝑝 𝑧!	 𝑧!$", 𝑥!)

Source Sentence
(English)

𝑥 = (𝑥", … , 𝑥%!)
Context

𝑝 𝑐	 𝑧&:%!)



• Recall RNN Encoder for next word prediction

• We now augment it with context

Structure of the Decoder

𝑠2 𝑠"

*𝑦"

𝑒2

𝑦2

*𝑦3

𝑠3

𝑒"

𝑦"
<BOS> “Tengo”

“Tengo”

*𝑦4

𝑠4

𝑒3

𝑦3
“un”

*𝑦5

𝑠5

𝑒4

𝑦4

*𝑦6

𝑠6

𝑒5

𝑦5
“grande”

“un” “gato”

“gato”

“grande” “week”

Word embeddings

Input text

Hidden states

Predicted next word

Target Sentence
(Spanish)

𝑦 = (𝑦", … , 𝑦%")

DECODER: Each layer outputs 𝑝 𝑦! 	𝑦&:!$", 𝑠! , 𝑐 ,
with some hidden state 𝑝 𝑠!	 𝑠!$", 𝑦!$", 𝑐)

Context
𝑝 𝑐	 𝑧&:%!)



• Remarks on Architecture from Sutskever et al. (2014):
• 𝑓789:;7<, 𝑓;79:;7<, 𝑔;79:;7< are parameterized by LSTM layers. 
• In theory, the context vector can be the output of a more complex func\on ℎ that takes in 

the en\re sequence of hidden states, i.e., 𝑐 = ℎ(𝑧2:$). But they found virtually no 
difference in performance when compared to only using the very last state.
• 𝑔789:;7< is not needed since we are not “decoding” from the ENCODER block. 

RNN Encoder-Decoder Architecture

RNN Block RNN Block RNN Block RNN Block

ENCODER: Each cell outputs hidden states 𝑧! = 𝑓'()*+',(𝑧!$", 𝑥!).

English Sentence
𝑥 = (𝑥", … , 𝑥%!)

Frase en Español
𝑦 = (𝑦", … , 𝑦%")

Decoder: Each cell outputs sequences 𝑦! = 𝑔+')*+',(𝑠! , 𝑦!$",	𝑐) 
and hidden states 𝑠! = 𝑓+')*+',(𝑠!$", 𝑦!$", 𝑐) 

RNN Block RNN Block RNN Block RNN Block

Fixed-length
Context 
Vector
𝑐 = 𝑧%!



• Learning: Suppose we have the 𝑁 samples 𝑥!:#%
& , 𝑦!:#!

&

&'!

(
 of source-target 

sentence pairs. Similar to sentence classificaWon, we can train the enWre model 
end-to-end using cross entropy loss

max
%

1
𝑁
3
&'!

(

log	𝑃%(𝑦!:#!
& ∣ 𝑥!:#%

(&) )

• Inference: To decode, we simply select the target sentence with the highest 
probability. For a given 𝑥!:#%, 

!𝑦!:#! = argmax$":$!𝑃% 𝑦!:#! 𝑥!:#%

                         = argmax$":$!𝑃% 𝑦!:#! 𝑐 𝑃% 𝑐 𝑥!:#%

Learning and Inference

Context ← EncoderDecoder ← Context



• However, there are obvious flaws to this design:
• Encoding: the context 𝑐 may not be able to capture earlier parts of the source sentence
• Fixed-length Context: All the information from the source sentence is “jammed” into the 

single context vector 𝑐.

• As a result, this design often fails to capture long range dependences. 

Major Flaw in Fixed-context seq2seq Models

ENCODER: Each layer outputs 𝑝(𝑥!|𝑥":!$"),
with some hidden  𝑝 𝑧!	 𝑧!$", 𝑥!)

Source Sentence
(English)

𝑥 = (𝑥", … , 𝑥%!)

Target Sentence
(Spanish)

𝑦 = (𝑦", … , 𝑦%")
DECODER: Each layer outputs 𝑝 𝑦! 	𝑦&:!$", 𝑠! , 𝑐 ,

with some hidden state 𝑝 𝑠!	 𝑠!$", 𝑦!$", 𝑐)

Context
𝑝 𝑐	 𝑧&:%)



• Q: How can we improve fixed-context seq2seq models?
• A: one possibility is to make the context time-dependent! 
• If our new context can better capture the information from each word, then it should prove 

long-range dependencies. 

• How should we model the probabilities 𝑝 𝑐+:#% 	 𝑧+:#%) and 𝑝 𝑦, 	𝑦+:,-!, 𝑠, , 𝑐, ?

Improving seq2seq Models

ENCODER: 𝑝(𝑥!|𝑥":!$")
with some hidden  𝑝 𝑧!	 𝑧!$", 𝑥!)

Source Sentence
(English)

𝑥 = (𝑥", … , 𝑥%!)

Target Sentence
(Spanish)

𝑦 = (𝑦", … , 𝑦%")

DECODER: Each layer outputs
𝑝 𝑦! 	𝑦&:!$", 𝑠! , 𝑥":%! = 𝑝 𝑦! 	𝑦&:!$", 𝑠! , 𝑐!

Time-dependent Context:
𝑝 𝑐&:%! 	 𝑧&:%!)



• Intuition: Translation of the word 𝑥,  to 𝑦,  depends on the contexts of both the 
source sentence 𝑥!:#  and target sentence 𝑦!:#.
• The latent space should be able to capture what is important

• Take our Spanish example: 
• Original sentence: “I have a big cat but a small house.” 
• Translated sentence: “Tengo un gato grande pero una casa pequeña.”
• Notice that the translation doesn’t exactly align
• Hence we need a way to tell the model what part of the sentence to focus on

• High-Level Idea: During decoding, each context 𝑐,  to be a summary of the 
sources’ hidden states 𝑧+:#% and the target’s current hidden states 𝑠,

Align and Translate [Bahdanau et al. (2015)]



Align and Translate [Bahdanau et al. (2015)]

• Define the probability of the target word 𝑦,  at Wme 𝑡 as

𝑝 𝑦, 𝑦+:,-!, 𝑠, , 𝑥!:#% = 𝑔./01./2(𝑦,-!, 𝑠, , 𝑐,)

• Here 𝑠, = 𝑓./01./2(𝑠,-!, 𝑦,-!, 𝑐,)	 is hidden state of the RNN decoder that takes 
in the previous word 𝑦,, the previous hidden state 𝑠,, and a context vector 𝑐,  as 
input.
•  Similar to before, 𝑓;79:;7< and 𝑔;79:;7< are func\ons parameterized by neural networks. 

DECODER: sequence 𝑦! = 𝑔+')*+', 𝑦!$", 𝑠! , 𝑐!  
with hidden states	𝑠! = 𝑓+')*+',(𝑠!$", 𝑦!$", 𝑐!)	

ENCODER: 𝑝 𝑥! 𝑥":!$" , 𝑝 𝑧!	 𝑧!$", 𝑥!) = RNN(𝑥":%!)
Source Sentence

(English)
𝑥 = (𝑥", … , 𝑥%!)

Target Sentence
(Spanish)

𝑦 = (𝑦", … , 𝑦%")

Time-dependent Context: 𝑝 𝑐&:%! 	 𝑧&:%!) = Attention



Align and Translate
• Decoder: context vector 𝑐,  is computed as a weighted sum 

of the hidden states 𝑧3:

• Here:
• 𝑐! is the expected hidden state over all the hidden states with 

probability 𝛾!H.
• 𝛾!H is the probability that the target word 𝑦! is aligned to, or 

translated from, a source word 𝑥H.
• 𝑎 is called the Alignment model

• Computes how well the inputs around position 𝑗 and the output at 
position 𝑡 match

• Typically chosen to be a feedforward neural network

𝑐! =	6
HI"

$"

𝛾!H𝑧H 𝛾!H =
exp(𝑒!H)

∑JI"
$" exp(𝑒!J)

Context vector Weights of hidden states

𝑒!H = 𝑎 𝑠!K", 𝑧H

Alignment model

𝑠!"# 𝑠! ……

𝑧$ 𝑧# 𝑧% 𝑧&!…

⨁

𝛾!,# 𝛾!,% 𝛾!,( 𝛾!,&!

𝑦!"# 𝑦!

𝑥&!𝑥%𝑥#𝑥$

𝑐!



Align and Translate
• In Bahdanau et al. (2015), they made the following design 

choices:
• Encoder: Using a Bi-directional RNN, compute the forward and 

backward hidden states ℎ! and ℎ! using input 𝑥 = 𝑥2, … , 𝑥$ . 
Concatenate them as one encoder hidden state 𝑧! = ℎ! 	ℎ!] 
(assume they are row vectors). Hidden states are also called 
annotations. 

• Decoder: Using a single direction RNN with Attention 
mechanism and alignment model

𝑎 𝑠LK", 𝑧H = 𝑣MNtanh(𝑊M𝑠LK" + 𝑈M𝑧H) 

• Ultimately, these design choices are flexible and 
application-dependent. 



Visualization of Annotations and Alignments

• Correlation between the source 
sentence (English) and target 
sentence (French) 

• Able to show that some target words 
“attend” to multiple target words

• Diagonal: 𝑥,  matches with 𝑦,
• Cross-Diagonal: context dependent



• Today we covered two seq2seq models:
• Encoder-Decoder with fixed context [Sutskever et al. (2014)]
• Time-dependent context with Attention Mechanism [Bahdanau et al. (2015)]

• Comparing seq2seq models
• Bi-directional RNNs instead of LSTMs
• Alignment model instead of single fixed-vector hidden states
• Have context vector 𝑐! that depends on the timestep

• Next lecture:
• Using attention mechanism for image captioning
• Is attention all your need? 

Recap
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Encoder-Decoder Architectures
• Encoder-Decoder Architectures allow us to
• Learn a meaningful hidden representation for our input
• Via a Decoder, make use of our hidden representation for downstream tasks

• So far, our main motivation has been driven by Language
• Machine Translation, Text Summarization, etc

• What about Cross Modalities? Language-to-Vision?



• Today we will talk about Image Caption Generation using a combination of 
Variational Auto Encoders (VAEs) and Recurrent Neural Networks (RNNs)

• Introduced in Xu et al (2016) “Show, Attend and Tell: Neural Image Caption 
Generation with Visual Attention”

• Task: Given an image, generate a sentence that describes the image
• Can be seen as a combination of Object Detection and Machine Translation

Up Next



• Today we will talk about Image Caption Generation using a combination of 
Variational Auto Encoders (VAEs) and Recurrent Neural Networks (RNNs)

• Our overall pipeline:

• Similar to any language task, suppose we are given a vocabulary of size 𝐾, a 
sentence of length 𝑇 can be presented by each word being a one-hot embedding

𝑦 = 𝑦+, … , 𝑦# , 𝑦, ∈ ℝ6

Task



Image Encoder
• An image can have many sources of information

• Ideally our hidden representation should be meaningful, in the sense that it 
should capture all the semantic parts of the image

Adult

Child

TreesFrisbee



• To capture these meaningful 
features, we will feed the image 
through a (pre-trained) 
ConvoluWonal Neural Network

• Then use the feature vectors 𝑥7  of 
earlier convoluWonal layers to 
represent low-level features

• Denote each part by

 𝑥 = 𝑥! … |	𝑥8] ∈ ℝ#%×:

   where 𝑇;  is the number of low-level features of dimension 𝐷

Image Encoder: Convolutional Neural Networks

Adult 𝑥3
Child 
𝑥4

Trees
𝑥5

Frisbee 𝑥"

Figure above: In an ideal situation, each semantic part is 
presented by a low-level feature vector 𝑥.. 



• Similar to Align and Translate, now we have to design the context vectors 
• For image cap\oning, we will use afen\on mechanisms to afend to different loca\ons of 

the image

• So, how is the context vector E𝑐,  computed using our image features 𝑥!…𝑥#%?

Decoder: LSTM with Context

RNN DECODER: sequence 𝑦! = 𝑔+')*+', 𝑦!$", 𝑠! , 𝑐!  
with hidden states	𝑠! = 𝑓+')*+',(𝑠!$", 𝑦!$", 𝑐!)	

IMAGE ENCODER: 𝑥 = 𝑥&, … , 𝑥%! = 𝐶𝑁𝑁(Image)Image

Target Sentence
(Image Caption)
𝑦 = (𝑦&, … , 𝑦%/)

Time-dependent Context: 𝑝 𝑐&:%! 	 𝑧&:%!) = Attention



• 𝑐,  is a context vector that presents the relevant part of the image input at time 𝑡
• There are two ways to compute 𝑐,  :
• Option 1: 𝜙 =	Hard Attention: only one of the 𝑇U image locations is chosen
• Option 2: 𝜙 =	Soft Attention: all of them is weighted in some way

• Similar to Align and Translate model, we can define:

Decoder: Context Vector and AWenXon

𝑒!L = 𝑎(𝑥L, 𝑠!K")𝛾!H =
exp(𝑒!H)

∑JI"
$" exp(𝑒!J)

“Attention Model”
a multi-layer perceptron

Weights, for which of the 𝐿 
positions to attend to

𝑐! = 𝜙(𝑥", … , 𝑥V, 𝛾!,", … , 𝛾!,V)
Some function 𝜙 of using 
the attention weights and 

features to combine a 
context vector. 

Image Features 𝑥", … , 𝑥%!
Decoder’s Hidden Features 𝑠", … , 𝑠%



• StochasWc Hard AdenWon implies we use a “on-off” way to choose which locaWon 
of the image to focus
• Meaning we can only choose one loca\on each \me

• Let !𝛾, ∈ 0, 1 8 be a one-hot locaWon variable that represents where the model 
decides to focus adenWon when generaWng the 𝑡th word.
• We can treat the adenWon locaWons as intermediate latent random variables

• This means we can treat 𝛾,  as a categorical distribuWon:

• And we can just sample this distribuWon during inference to obtain samples for 
the context 𝑐̂,.

First option for 𝜙: Stochastic Hard Attention

𝑝 *𝛾!,L = 1	 *𝛾":!K", 𝑥", … , 𝑥V) = 	𝛾!,L	 𝑐̂! = 6
JI"

$"

*𝛾!,J𝑥J

*𝛾!	~	Categorical(𝛾!,", … , 𝛾!,$")



• While it is intuitive to parameterize !𝛾, 	~	Categorical(𝛾,,!, … , 𝛾,,#%), it raises the 
question of how to train the entire model end-to-end? 
• This is the same issue we face in VAEs! 
• Hence we can use the Variational Lower Bound approach

• To backpropagate through the entire model, we need to define a variational 
lower bound on the marginal log-likelihood log 𝑝 𝑦+:# 	 𝑥!:#%) of observing the 
sequence of words 𝑦+:#  given image features 𝑥

• Quick Recall: Let 𝑋 and 𝑍 be a random variable, jointly distributed with 
distribution 𝑝%. If 𝑝%(𝑋) is the marginal distribution of 𝑋 and 𝑝% 𝑍 𝑋) is the 
conditional distribution of 𝑍 given X. Then for any sample 𝑥	~	𝑝%  and any 
distribution 𝑞=, we have

Stochastic Hard Attention (Learning)

log 𝑝W 𝑥 ≥ 	𝔼X~Z*[log
𝑝W(𝑥, 𝑧)
𝑞[ 𝑧

]



• Just like our VAE model, we may now consider our context 𝑝(𝑐) as our latent 
variable. Then we can derive the ELBO.

• Define
• 𝜓 as the parameters of the encoder 𝑞 𝑐	 𝑥), the distribu\on of context vectors from CNNs.
• 𝜃 as the parameters of the decoder 𝑝 𝑦	 𝑐, 𝑥), the image cap\oner.

• The Evidence Lower Bound 𝐿>:

Stochastic Hard Attention (Learning)

𝐿W,[(𝑐, 𝑥, 𝑦) =6
9

𝑞[ 𝑐	 𝑥) log 𝑝W 𝑦	 𝑐, 𝑥)

≤ log6
9

𝑞[ 𝑐	 𝑥)𝑝W 𝑦	 𝑐, 𝑥)	

= log 𝑝W 𝑦	 𝑥)

(Jensen’s Inequality)

(Marginal Log-Likelihood)



• Our Lower Bound: 𝐿%,=(𝑐, 𝑥, 𝑦) = ∑0 𝑞= 𝑐	 𝑥) log 𝑝% 𝑦	 𝑐, 𝑥)
• To learn we will need the gradient. For both parameter 𝑊 = {𝜃, 𝜓} in our RNN, 

we can estimate the gradient using Monte Carlo sampling approximation.

• The exact derivative for the ELBO objective (derivation next slide):
𝜕𝐿
𝜕𝑊

=3
0

𝑞= 𝑐 𝑥 [
𝜕 log 𝑝% 𝑦 𝑐, 𝑥

𝜕𝑊
+ log 𝑝% 𝑦	 𝑐, 𝑥)

𝜕log	𝑞= 𝑐	 𝑥) 
𝜕𝑊

]

• The estimated derivative using Monte Carlo sampling approximation, with 
!𝛾, 	~	Categorical 𝛾,,!, … , 𝛾,,8  and 𝑐̂, = ∑?'!

#% !𝛾,,?𝑥?:
𝜕𝐿
𝜕𝑊

=
1
𝑀
3
@'!

A

[
𝜕 log 𝑝%(𝑦 ∣ 𝑐̂(@), 𝑥)

𝜕𝑊
+  log 𝑝%(𝑦 ∣ 𝑐̂(@), 𝑥)

𝜕 log 𝑞= 𝑐̂ @ 	 𝑥)
𝜕𝑊

] 

StochasXc Hard AWenXon (Learning)



• 𝐿%,=(𝑐, 𝑥, 𝑦) = ∑0 𝑞= 𝑐	 𝑥) log 𝑝% 𝑦	 𝑐, 𝑥)

𝜕𝐿%,=(𝑐, 𝑥, 𝑦)
𝜕𝑊

   = ∑0 𝑞= 𝑐 𝑥 B CDE F&($∣0,;)
BH

+
BI' 0	 ;) 

BH
log 𝑝% 𝑦	 𝑐, 𝑥)  (chain rule)

   = ∑0 𝑞= 𝑐 𝑥 B CDE F&($∣0,;)
BH

+ 𝑞= 𝑐	 𝑥) BCDE	I' 0	 ;) 
BH

log 𝑝% 𝑦	 𝑐, 𝑥)

   = ∑0 𝑞= 𝑐 𝑥 [B CDE F& 𝑦 𝑐, 𝑥
BH

+ BCDE	I' 0	 ;) 
BH

log 𝑝% 𝑦	 𝑐, 𝑥)]

• The third line uses the identity 
BI' 0	 ;) 

BH
= 𝑞= 𝑐	 𝑥) BCDE	I' 0	 ;) 

BH

Derivation of the Gradient for Exact ELBO



• Recall our three equations:

• Hard Attention method requires us to ample the attention location 𝑐,  each time
• Instead, we can take the expectation of the context vector 𝑐,  directly

𝑐,  = 𝜙(𝑥!, … , 𝑥8 , 𝛾,,!, … , 𝛾,,8) = ∑7'!
#% 𝛾,,7𝑥7

• Then this would no longer be a ”on-off” mechanism, but a weighted sum of low-
level features instead. 

• Lucky for us, this is differentiable end-to-end using cross entropy 

Second option for 𝜙: Deterministic “Soft” Attention

𝑒!L = 𝑎(𝑥L, 𝑠!K")𝛾!H =
exp(𝑒!H)

∑JI"
$" exp(𝑒!J)

𝑐! = 𝜙(𝑥", … , 𝑥V, 𝛾!,", … , 𝛾!,V)



So\ AWenXon vs Hard AWenXon



Examples of Image Caption Generation



Examples of Image Caption Generation



• We introduced a Multi-modal Encoder-Decoder architecture method to do image 
caption
• Generative: parameterize location variable with categorial variable (Hard Attention), use 

MCMC to sample and learn the RNN decoder. 
• Discriminative: use weighted sum (Soft Attention) and train everything end-to-end. 

• We have shown the brief history of Attention mechanism
• Sequence to Sequence with Neural Networks for Machine Translation

• The use of fixed-length single context vector to decode 𝑐
• Align and Translate for Machine Translation

• The use of multiple time-dependent context vectors 𝑐!
• Image Captioning 

• Soft and Hard Attention

Wrap-up



• Hard to capture long-term dependencies
• Require modification to architectures

• Training Issues: Vanishing/Exploding Gradients
• Hard to handle varying length sequences
• Sequential nature make them hard to process in parallel

• Solution to all of this: 
• Let’s not depend on recurrence anymore
• Let’s just rely “Attention” completely to capture global dependencies

Why do RNNs fall short? And what can we do?


